
DisDisDisDisaaaassembler Program Specificationssembler Program Specificationssembler Program Specificationssembler Program Specification

Program function

This program is designed to take a binary assembly language code file (.S68 file)

written for the Motorola 68000 microprocessor and convert it back into its original

assembly source code text. It does not support every instruction that the Motorola

68000 chip offers. The supported instructions are: NOP, MOVE, MOVEA, MOVEM,

ADD, ADDA, SUB, SUBQ, MULS, DIVS, LEA, OR, ORI, NEG, EOR, LSR, LSL, ASR,

ASL, ROL, ROR, BCLR, CMP, CMPI, Bcc (BCS, BGE, BLT, BVC), BRA, JSR, and

RTS. The supported effective addressing modes (when available for that instruction)

are: Dn, An, (An), (An)+, -(SP), # (immediate data), (xxx).L (absolute long address), and

(xxx).W (absolute word address). Any unsupported function or effective addressing

mode found in a program will be displayed as “DATA” along with its hexadecimal value

found in the binary file and the program will continue to function.

Use

Upon starting the program, the user is prompted to specify a starting address of

the target program to disassemble. The user must enter a value within the range

specified in this message and press ‘Enter’. The user must then enter an ending

address for the target program (or the end of the section to disassemble). If the two

numbers are invalid, the prompts will replay until they receive two valid addresses. If the

two numbers are valid, the screen fills with three columns of text. The first column of

text indicates the location of the disassembled instruction. The second column is the

Assembly Language pneumonic for that instruction (i.e.: MOVE, BCLR). The third

column lists any arguments for that function. For example, the decoded instruction

MOVE.B D0,D1 found at line 1000 would separate into the three columns as:

00001000 MOVE.B D0,D1

When the user is finished reading the results on the page, they can advance to the next

page of decoded instructions by pressing enter again. When the last page of decoded

instructions is reached, the user may press the ‘Y’ key to restart the program.

REB’s Coding StandardsREB’s Coding StandardsREB’s Coding StandardsREB’s Coding Standards

General

The REB’s are Robert Griswold, Eric Mitchell, and Brian Lorton. Throughout the

project,Git was used to maintain up-to-date versions of the team’s files.

Disassembler

Our program begins with a description of the program function. Given the unclear nature

of the assembly language, brief comments were necessary on nearly every single line of code.

In addition, each function and complete, distinct block of code is given a larger comment which

is separated into a few sections:

● The first section is a brief summary of the code’s function and how it is used.

● The next section is a TO-DO section if any work is still left to be done.

● The third section is a NOTES section which indicates any special exceptions or

side-effects of calling the function.

● The PARAMS section shows what results from the function and where that

information will be placed.

● The RETURN section indicates any value returned by the function, if any. The

MODIFIES section indicates any changes to values within registers or memory

caused by the function.

Test Code

 Since the functions in the test code only need to be reproduced as they appear in the

source code and do not collectively accomplish anything meaningful, there are much fewer

comments. Comments are given at the beginning of each set of tests for an individual function.

For instance, a comment will indicate when we are testing a new function like MOVE. another

comment may appear shortly after which indicates MOVE: Dn to Dn.

REBREBREBREB’’’’s s s s Test PlanTest PlanTest PlanTest Plan

Test Code Methodology

 The test code for all functions is contained within one master file. The goal of our test

code was to be exhaustive. When possible, we wrote every possible instance of a function: like

MOVE.B Dn,Dn, which uses every combination of Dn,Dn. Where this was not possible, like with

immediates, we chose between 5-12 cases that may be exceptional(-1,0,$FFFF) and used

these to test the functions with these numbers.

Early Testing

 Any early testing for the disassembler (like NOP and DATA) was done on the

disassembler program itself. This type of testing was used for the first and second week of work

on the disassembler.

Testing Techniques

The tests for any function were performed during and after the completion of that

function. The tests were run by loading the test program into memory, specifying the memory

address where the function to test is located, and running the disassembler on this code.

Results from the disassembler were compared manually with the original test source code. This

process was repeated with the test code starting in several different locations in memory.

Occasionally, the test code for any function is checked again to make sure that any new

additions to the code did not affect the proper functioning of old blocks of code.

Task Breakdown RepoTask Breakdown RepoTask Breakdown RepoTask Breakdown Reportrtrtrt

At the beginning of the project, we assigned roles to each of our three team members.

These roles were as follows:

● Robert Griswold - Decode functions and disassembler framework

● Brian Lorton - Decode functions and disassembler framework

● Eric Mitchell - Test code and documentation.

Team members filled in where needed or where was necessary to have complete

understanding of the disassembler. For example, Brian Lorton created the test code for our

disassembler presentation--a more concise version of the exhaustive test code which better

suited a short presentation. Eric Mitchell decoded a few functions for the disassembler to make

sure he understood its inner workings. The breakdown of work is as follows:

Task Implementer Time to complete

Disassembler Design Robert Griswold 1 day

Disassembler Main Robert Griswold 1/2 day

Input Subroutine Robert Griswold 2 days

Effective Address Subroutine Robert Griswold 1 day

Output Subroutine Robert Griswold 1 day

Hex Conversion Subroutine Robert Griswold 1/2 day

Test Code Eric Mitchell 1.5 weeks

Decoder Flowchart Brian Lorton 1.5 weeks?

NOP Robert Griswold 15 mins

MOVEM Eric Mitchell 30 mins

MOVE/MOVEA Eric Mitchell/Eric Mitchell 2 hours/15 minutes

ADD/ADDA Brian Lorton 20 hours :(

SUB/SUBQ Brian Lorton/Eric Mitchell 2 hours / 3 days

MULS/DIVS Brian Lorton 30 mins / 30 mins

LEA Eric Mitchell 30 minutes

OR/ORI Brian Lorton 3 hours / 3 hours

NEG Robert Griswold 1/2 day

EOR Brian Lorton 1 hour

LSR/LSL/ASR/ASL/ROL/ROR Robert Griswold 1 day

BCLR Brian Lorton 3 hours and

counting

CMP/CMPI Brian Lorton 1 hour / 2 hours

BCC Brian Lorton 6 hours

BRA/JSR Brian Lorton/Eric Mitchell 1 hour/10 seconds

RTS Eric Mitchell 1 hour

Project Description Eric Mitchell 1 day

Program Specification Eric Mitchell 1 day

Test Plan Eric Mitchell 1 day

Exceptions Report Eric Mitchell 1 day

Task Breakdown Report Eric Mitchell 1 day

